
CS 1112 Introduction to
Computing Using MATLAB

Instructor: Dominic Diaz

Website:
https://www.cs.cornell.edu/courses/cs111
2/2022fa/

Today: sorting/searching

https://www.cs.cornell.edu/courses/cs1112/2022fa/
https://www.cs.cornell.edu/courses/cs1112/2022fa/

Agenda and announcements
● Last time

○ Recursion
● Today

○ An algorithm for sorting (merge sort)
○ An algorithm for searching (binary search)

● Announcements
○ Project 6 due Dec 5th
○ Code ‘til you drop session on Dec 14th
○ Last discussion exercise this week

■ Optional but can replace your lowest discussion score.
○ Final exam on Thursday, December 15th from 2 - 4:30 PM in Olin 155

■ Check your “final exam time and location” CMS assignment if you have an
SDS letter. If you have 3+ finals in a 24 hour period, submit a regrade request
and we can reschedule this exam.

Searching for an item in an unorganized collection?

● May need to look through the whole collection to find the target item
● Could use linear search

For example, find value x
in vector v

% Linear Search
% f is index of first occurrence
% of value x in vector v.
% f is -1 if x not found.
k= 1;
while k<=length(v) && v(k)~=x

k= k + 1;
end

if k>length(v)
f= -1; % signal for x not found

else
f= k;

end

5 4 9 2 1

1x

v

In the worst case,
the while loop will
be evaluated n
times, assuming
n=length(v).

Searching for an item in an unorganized collection?

● May need to look through the whole collection to find the target item
● Could use linear search

For example, find value x
in vector v

% Linear Search
% f is index of first occurrence
% of value x in vector v.
% f is -1 if x not found.
k= 1;
while k<=length(v) && v(k)~=x

k= k + 1;
end

if k>length(v)
f= -1; % signal for x not found

else
f= k;

end

5 4 9 2 1

1x

v

In the worst case,
the while loop will
be evaluated n
times, assuming
n=length(v).

Searching in a
sorted list should
require less work!

An ordered (sorted) list

Manhattan phone book has
1,000,000+ entries

If the list were unsorted, you would
have to look through every name
to find someone.

There are many algorithms for sorting

● Merge sort (discussed this lecture)
● Selection sort (exercise this week)
● Insertion sort (discussed next lecture)
● Bubble sort (read insight section 8.2)
● Quick sort (a variant used by MATLAB’s built-in sort function)

● Each has advantages and disadvantages. Some algorithms are faster (time
efficient) while others are memory-efficient.

● Great opportunity for learning to analyze the efficiency of programs and
algorithms

Merge sort motivation

If I have two helpers, I would:
● Give each helper half the array to sort
● Then I get back the sorted subarrays

and merge them

What if those two helpers each had two
sub-helpers?

And each of those sub-helpers each has two
sub-sub-helpers? And…

Let’s see how we can apply this idea to sort an unsorted list

G R W M A R T H A T O N Y D O M

Let’s see how we can apply this idea to sort an unsorted list

G R W M A R T H A T O N Y D O M

G R W M A R T H A T O N Y D O M

Let’s see how we can apply this idea to sort an unsorted list

G R W M A R T H A T O N Y D O M

G R W M A R T H A T O N Y D O M

G R W M A R T H A T O N Y D O M

Let’s see how we can apply this idea to sort an unsorted list

G R W M A R T H A T O N Y D O M

G R W M A R T H A T O N Y D O M

G R W M

G R W M

A R T H

A R T H

A T O N Y D O M

A T O N Y D O M

Let’s see how we can apply this idea to sort an unsorted list

G R W M A R T H A T O N Y D O M

G R W M A R T H A T O N Y D O M

G R W M

G R

G

W M

R W M

A R T H

A R T H

A T O N Y D O M

A T O N Y D O M

A R T H A T O N Y D O M

Let’s see how we can apply this idea to sort an unsorted list

G R W M A R T H A T O N Y D O M

G R W M A R T H A T O N Y D O M

G R W M

G R

G

M W

R W M

A R T H

A R H T

A T O N Y D O M

A T N O D Y M O

A R T H A T O N Y D O M

Let’s see how we can apply this idea to sort an unsorted list

G R W M A R T H A T O N Y D O M

G R W M A R T H A T O N Y D O M

G M R W

G R

G

M W

R W M

A H R T

A R H T

A N O T D M O Y

A T N O D Y M O

A R T H A T O N Y D O M

Let’s see how we can apply this idea to sort an unsorted list

A G H M R R T W A D M N O O T Y

G M R W

G R

G

M W

R W M

A H R T

A R H T

A N O T D M O Y

A T N O D Y M O

A R T H A T O N Y D O M

G R W M A R T H A T O N Y D O M

Let’s see how we can apply this idea to sort an unsorted list

A A D G H M M N O O R R T T W Y

A G H M R R T W A D M N O O T Y

G M R W

G R

G

M W

R W M

A H R T

A R H T

A N O T D M O Y

A T N O D Y M O

A R T H A T O N Y D O M

% sort vector x
if length(x) is 1,

Do nothing. x is already sorted.
else

Cut x in half
Sort the left half
Sort the right half
Merge the sorted left and right halves

Merge sort - writing the code

function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.
n = length(x);
if n == 1

y = x;
else

m = n/2;
yL = mergeSort(x(1:m));
yR = mergeSort(x(m+1:n));
% merge sorted yL and yR
y = merge(yL,yR);

end

Using recursion we need to identify base case(s)
and make progress toward a base case.

Base case

Make progress
towards base
case

Writing the merge sort function

function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.
n = length(x);
if n == 1

y = x;
else

m = n/2;
yL = mergeSort(x(1:m));
yR = mergeSort(x(m+1:n));
% merge sorted yL and yR
y = merge(yL,yR);

end

Assuming the function merge correctly
merges two sorted arrays, are there any
errors in this code?

If n is odd, m will be a decimal number.
Answer: Let’s floor (or ceil) m

If x = [], your code enters infinite recursion.
Answer: Add to base cases

Writing the merge sort function

function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.
n = length(x);
if n == 1 || n == 0

y = x;
else

m = floor(n/2);
yL = mergeSort(x(1:m));
yR = mergeSort(x(m+1:n));
% merge sorted yL and yR
y = merge(yL,yR);

end

Now we just have to
merge two sorted
arrays:
merge(yL, yR).

How can we merge two sorted arrays?

12 15 33 35 42 45 55 65 75

15 42 55 65 75

12 33 35 45L

R

z

How can we merge two sorted arrays?

15 42 55 65 75

12 33 35 45L

R

z

 iL

 iR

 iz

1

1

1

if L(iL) <= R(iR)
z(iz) = L(iL);
Increment iL and iz;

end

How can we merge two sorted arrays?

12

15 42 55 65 75

12 33 35 45L

R

z

 iL

 iR

 iz

1

1

1

if L(iL) <= R(iR)
z(iz) = L(iL);
Increment iL and iz;

end

How can we merge two sorted arrays?

12

15 42 55 65 75

12 33 35 45L

R

z

 iL

 iR

 iz

2

1

2

if L(iL) <= R(iR)
z(iz) = L(iL);
Increment iL and iz;

end

How can we merge two sorted arrays?

12

15 42 55 65 75

12 33 35 45L

R

z

 iL

 iR

 iz

2

1

2

if L(iL) <= R(iR)
z(iz) = L(iL);
Increment iL and iz;

else
z(iz) = R(iR);
Increment iR and iz;

end

How can we merge two sorted arrays?

12 15

15 42 55 65 75

12 33 35 45L

R

z

 iL

 iR

 iz

2

1

2

if L(iL) <= R(iR)
z(iz) = L(iL);
Increment iL and iz;

else
z(iz) = R(iR);
Increment iR and iz;

end

How can we merge two sorted arrays?

12 15

15 42 55 65 75

12 33 35 45L

R

z

 iL

 iR

 iz

2

2

3

if L(iL) <= R(iR)
z(iz) = L(iL);
Increment iL and iz;

else
z(iz) = R(iR);
Increment iR and iz;

end

How can we merge two sorted arrays?

12 15 33

15 42 55 65 75

12 33 35 45L

R

z

 iL

 iR

 iz

2

2

3

if L(iL) <= R(iR)
z(iz) = L(iL);
Increment iL and iz;

else
z(iz) = R(iR);
Increment iR and iz;

end

How can we merge two sorted arrays?

12 15 33

15 42 55 65 75

12 33 35 45L

R

z

 iL

 iR

 iz

3

2

4

if L(iL) <= R(iR)
z(iz) = L(iL);
Increment iL and iz;

else
z(iz) = R(iR);
Increment iR and iz;

end

How can we merge two sorted arrays?

12 15 33 35

15 42 55 65 75

12 33 35 45L

R

z

 iL

 iR

 iz

3

2

4

if L(iL) <= R(iR)
z(iz) = L(iL);
Increment iL and iz;

else
z(iz) = R(iR);
Increment iR and iz;

end

How can we merge two sorted arrays?

12 15 33 35

15 42 55 65 75

12 33 35 45L

R

z

 iL

 iR

 iz

4

2

5

if L(iL) <= R(iR)
z(iz) = L(iL);
Increment iL and iz;

else
z(iz) = R(iR);
Increment iR and iz;

end

How can we merge two sorted arrays?

12 15 33 35 42

15 42 55 65 75

12 33 35 45L

R

z

 iL

 iR

 iz

4

2

5

if L(iL) <= R(iR)
z(iz) = L(iL);
Increment iL and iz;

else
z(iz) = R(iR);
Increment iR and iz;

end

How can we merge two sorted arrays?

12 15 33 35 42

15 42 55 65 75

12 33 35 45L

R

z

 iL

 iR

 iz

4

3

6

if L(iL) <= R(iR)
z(iz) = L(iL);
Increment iL and iz;

else
z(iz) = R(iR);
Increment iR and iz;

end

How can we merge two sorted arrays?

12 15 33 35 42 45

15 42 55 65 75

12 33 35 45L

R

z

 iL

 iR

 iz

4

3

6

if L(iL) <= R(iR)
z(iz) = L(iL);
Increment iL and iz;

else
z(iz) = R(iR);
Increment iR and iz;

end

How can we merge two sorted arrays?

12 15 33 35 42 45

15 42 55 65 75

12 33 35 45L

R

z

 iL

 iR

 iz

5

3

7

if L(iL) <= R(iR)
z(iz) = L(iL);
Increment iL and iz;

else
z(iz) = R(iR);
Increment iR and iz;

end

Need to stop doing
these comparisons
because L(iL)=L(5)
does not exist.

How can we merge two sorted arrays?

12 15 33 35 42 45

15 42 55 65 75

12 33 35 45L

R

z

 iL

 iR

 iz

5

3

7

while iL<=length(L) && iR<=length(R)
if L(iL) <= R(iR)

z(iz) = L(iL);
Increment iL and iz;

else
z(iz) = R(iR);
Increment iR and iz;

end
end

Need to fill in the rest
of R (or L) into z

How can we merge two sorted arrays?

12 15 33 35 42 45

15 42 55 65 75

12 33 35 45L

R

z

 iL

 iR

 iz

5

3

7

while iL<=length(L) && iR<=length(R)
if L(iL) <= R(iR)

z(iz) = L(iL);
Increment iL and iz;

else
z(iz) = R(iR);
Increment iR and iz;

end
end
% if iR <= length(R), put in z
% if iL <= length(L), put in z

How can we merge two sorted arrays?

12 15 33 35 42 45 55 65 75

15 42 55 65 75

12 33 35 45L

R

z

 iL

 iR

 iz

5

3

7

while iL<=length(L) && iR<=length(R)
if L(iL) <= R(iR)

z(iz) = L(iL);
Increment iL and iz;

else
z(iz) = R(iR);
Increment iR and iz;

end
end
% if iR <= length(R), put in z
% if iL <= length(L), put in z

function z = merge(L,R)
% Merge two sorted arrays L and R
nL = length(L); nR = length(R);
z = zeros(1, nL+nR);
iL = 1; iR = 1; iz = 1;
while iL<=nL && iR<=nR

if L(iL) <= R(iR)
z(iz)= L(iL); iL=iL+1; iz=iz+1;

else
z(iz)= R(iR); iR=iR+1; iz=iz+1;

end
end

% if iL <= nL, put rest of L in z

% if iR <= nR, put rest of R in z

How can we merge two sorted arrays

function z = merge(L,R)
% Merge two sorted arrays L and R
nL = length(L); nR = length(R);
z = zeros(1, nL+nR);
iL = 1; iR = 1; iz = 1;
while iL<=nL && iR<=nR

if L(iL) <= R(iR)
z(iz)= L(iL); iL=iL+1; iz=iz+1;

else
z(iz)= R(iR); iR=iR+1; iz=iz+1;

end
end
while iL<=nL % copy remaining L-values

z(iz)= L(iL); iL=iL+1; iz=iz+1;
end
while iR<=nR % copy remaining R-values

z(iz)= R(iR); iR=iR+1; iz=iz+1;
end

How can we merge two sorted arrays

Merge sort: both codes together

function z = merge(L,R)
% Merge two sorted arrays L and R
nL = length(L); nR = length(R);
z = zeros(1, nL+nR);
iL = 1; iR = 1; iz = 1;
while iL<=nL && iR<=nR

if L(iL) <= R(iR)
z(iz)= L(iL); iL=iL+1; iz=iz+1;

else
z(iz)= R(iR); iR=iR+1; iz=iz+1;

end
end
while iL<=nL % copy remaining L-values

z(iz)= L(iL); iL=iL+1; iz=iz+1;
end
while iR<=nR % copy remaining R-values

z(iz)= R(iR); iR=iR+1; iz=iz+1;
end

function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.
n = length(x);
if n == 1 || n == 0

y = x;
else

m = floor(n/2);
yL = mergeSort(x(1:m));
yR = mergeSort(x(m+1:n));
% merge sorted yL and yR
y = merge(yL,yR);

end

Merge sort: both codes together

function z = merge(L,R)
% Merge two sorted arrays L and R
nL = length(L); nR = length(R);
z = zeros(1, nL+nR);
iL = 1; iR = 1; iz = 1;
while iL<=nL && iR<=nR

if L(iL) <= R(iR)
z(iz)= L(iL); iL=iL+1; iz=iz+1;

else
z(iz)= R(iR); iR=iR+1; iz=iz+1;

end
end
while iL<=nL % copy remaining L-values

z(iz)= L(iL); iL=iL+1; iz=iz+1;
end
while iR<=nR % copy remaining R-values

z(iz)= R(iR); iR=iR+1; iz=iz+1;
end

function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.
n = length(x);
if n == 1 || n == 0

y = x;
else

m = floor(n/2);
yL = mergeSort(x(1:m));
yR = mergeSort(x(m+1:n));
% merge sorted yL and yR
y = merge(yL,yR);

end

Challenge question:

When I call mergeSort(x)
when x has length 17,
what is the maximum
number of mergeSort call
frames that will be open
at one time?

We have a sorted array, now what?

We can still use linear search to
search for items in a sorted list.

6 10 15 23 29 31 32 45 47 52

When you search through a
phone book, you do something
a little more efficient than linear
search…

Key idea of “phone book search”: repeated halving

To find the page containing Benito Antonio Martínez Ocasio’s number…

While (phone book is longer than 1 page)
Open to the middle page
If “Ocasio” comes before the first entry on the current page

Rip and throw away the second half
Else

Rip and throw away the first half
End

end

What happens to the phone book length?

Original: 3000 pages

After 1 rip: 1500 pages

After 2 rips: 750 pages

After 3 rips: 375 pages

After 4 rips: 188 pages

After 5 rips: 94 pages

 ⠇
After 12 rips: 1 page

Binary search

● Repeatedly halving the size of the “search space” is the main idea behind the
method of binary search

● An item in a sorted array of length n can be located with just log
2
n

comparisons
○ Where does this log come from? Mathematics! Take a data structures and algorithms class to

find out how!

● Time savings are significant!
n log

2
n

100 7

1000 10

10000 13

Binary search: target = 70

12 15 33 35 42 45 51 62 73 75 86 98

1 2 3 4 5 6 7 8 9 10 11 12

 L

 R

 Mid

1

12

6

Since v(mid) < target, we know
that we can throw away everything
before index mid

Binary search: target = 70

12 15 33 35 42 45 51 62 73 75 86 98

1 2 3 4 5 6 7 8 9 10 11 12

 L

 R

 Mid

6

12

9

Since v(mid) > target, we know
that we can throw away everything
before the index mid

Binary search: target = 70

12 15 33 35 42 45 51 62 73 75 86 98

1 2 3 4 5 6 7 8 9 10 11 12

 L

 R

 Mid

6

9

7

Since v(mid) < target, we know
that we can throw away everything
before the index mid

Binary search: target = 70

12 15 33 35 42 45 51 62 73 75 86 98

1 2 3 4 5 6 7 8 9 10 11 12

 L

 R

 Mid

7

9

8

Since v(mid) < target, we know
that we can throw away everything
before the index mid

Binary search: target = 70

12 15 33 35 42 45 51 62 73 75 86 98

1 2 3 4 5 6 7 8 9 10 11 12

 L

 R

 Mid

8

9

8

Done because L-R == 1

function L = binarySearch(x, v)
% Find position after which to insert x. v is sorted in ascending
% order. L is the index such that v(L) <= x < v(L+1);
% L=0 if x<v(1). If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L..R] such that v(L)<=x<v(R).
% Since x may be outside of the range of v, initially set ...
L = 0; R = length(v)+1;

% Keep halving your search space [L, R] until R-L is 1,
% always keeping v(L) <= x < v(R)
while R ~= L+1

m = floor((L+R)/2); % middle of search window
if v(m) <= x

L = m;
else

R = m;
end

end

function L = binarySearch(x, v)
% Find position after which to insert x. v is sorted in ascending
% order. L is the index such that v(L) <= x < v(L+1);
% L=0 if x<v(1). If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L..R] such that v(L)<=x<v(R).
% Since x may be outside of the range of v, initially set ...
L = 0; R = length(v)+1;

% Keep halving your search space [L, R] until R-L is 1,
% always keeping v(L) <= x < v(R)
while R ~= L+1

m = floor((L+R)/2); % middle of search window
if v(m) <= x

% get rid of everything in left half
else

% get rid of everything in the right half
end

end

function L = binarySearch(x, v)
% Find position after which to insert x. v is sorted in ascending
% order. L is the index such that v(L) <= x < v(L+1);
% L=0 if x<v(1). If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L..R] such that v(L)<=x<v(R).
% Since x may be outside of the range of v, initially set ...
L = 0; R = length(v)+1;

% Keep halving your search space [L, R] until R-L is 1,
% always keeping v(L) <= x < v(R)
while R ~= L+1

m = floor((L+R)/2); % middle of search window
if v(m) <= x

L = m;
else

R = m;
end

end

function L = binarySearch(x, v)
% Find position after which to insert x. v is sorted in ascending
% order. L is the index such that v(L) <= x < v(L+1);
% L=0 if x<v(1). If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L..R] such that v(L)<=x<v(R).
% Since x may be outside of the range of v, initially set ...
L = 0; R = length(v)+1;

% Keep halving your search space [L, R] until R-L is 1,
% always keeping v(L) <= x < v(R)
while R ~= L+1

m = floor((L+R)/2); % middle of search window
if v(m) <= x

L = m;
else

R = m;
end

end

Check out binarySearch.m and
showBinarySearch.m on the course website!

